

Test Report PPR-3202

Test	- 1-	.:-	-4-
IPST	On	пр	CT.

Cold Shrink Indoor Termination type CSTI and Cold Shrink Outdoor Termination

Type CSTO for screened single core polymeric cables without armour TE Connectivity reference: CSTI-6152-ML-7-13, CSTO-6152-ML-7-13,

CSTO-6162-ML-8-21

Test performed: Requirements according to CENELEC HD 629.1 S3 from 2015-09 (Draft) Table 6

Sequence A1 and Table 7 Sequence A1 for rated voltage U₀/U (U_m) 20,8/36(42) kV

Test result:

All samples passed the test requirements in accordance with the CENELEC HD

629.1 S3:2015 (Draft) table 6 Sequence A1 and table 7 Sequence A1 for rated

voltage U₀/U (U_m) 20,8/36(42) kV

Pages:

41

Tested by:

Bayram Cataltepe

(Laboratory Technician)

Signature:

Date:

Prepared by:

Christoph Baier

(Laboratory Manager)

Signature:

Date:

Released by:

Per Christian Olving

Signature:

Date:

Chn. Bee

(Product Manager)

23.02.17

23.02.17

Tyco Electronics Raychem GmbH

a TE Connectivity LTD. Company Finsinger Feld 1 D-85521 Ottobrunn Munich, Germany

Tel.: +49-89-6089-0 Fax: +49-89-6096-345 © Raychem reports may only be used in their original form

Content

1	General information	3
1.1	Description of the test objects	3
1.2	Description of the test cables	3
1.3	Test standards	4
1.4	Test facilities	4
1.5	Test dates	4
2	Test sequence and requirements	5
3	Test setups	6
3.1	AC voltage dry withstand	6
3.2	Partial discharge at ambient temperature	7
3.3	Partial discharge at elevated temperature	
3.4	Impulse voltage	9
3.5	Heating cycle voltage in air	10
3.6	Immersion test for outdoor terminations	11
4	Results	12
4.1	AC voltage dry withstand	12
4.2	Partial discharge at ambient temperature	13
4.3	Impulse voltage at elevated temperature	14
4.4	Heating cycle voltage in air	18
4.5	Immersion test for outdoor terminations	19
4.6	Partial discharge at elevated and ambient temperature	22
4.7	Impulse voltage at ambient temperature	
4.8	AC voltage dry withstand	31
4.9	Partial discharge at ambient temperature	32
4.10	Examination	33
Α.	Appendices	34
A.1 lo	dentification of test cable 500 mm ²	34
A.2 lo	dentification of test cable 1000 mm ²	35
A.3 Iı	nstallation instructions	36
ΔΛΚ	Cit content lists	11

1 General information

1.1 Description of the test objects

Test objects: 4 indoor terminations type CSTI-6152-ML-7-13

installed on 500mm² (test objects A),

4 outdoor terminations type CSTO-6152-ML-7-13

installed on 500mm² (test objects B),

4 outdoor terminations type CSTO-6162-ML-8-21

installed on 1000mm² (test objects C)

Manufacturer: TE Connectivity Kunshan PRC

TE kit reference: CSTI-6152-ML-7-13,

CSTO-6152-ML-7-13, CSTO-6162-ML-8-21

Part description: CSTI-35-BD-32-583-FS,

CSTO-35-BD-32-581-FS

Rated voltage $U_0/U(U_m)$: 20,8/36 (42) kV

Connector type: Mechanical cable lug type BLMT-500/630 MK2-13

(test object A and B),

Mechanical cable lug type BLMT-800/1000-21

(test object C)

Installation instructions: EPP-2828-2/17 (see **Appendix A.3**)

List of kit content: See Appendix A.4

1.2 Description of the test cables

Length of each test loop: 3.5 m (without test object)

Cable type: Single core cable with XLPE insulation, type VDE 0276

NA2XS(F)2Y (see Appendix A.1)

Cable conductor material: Copper Cable conductor cross-section: 500 mm² Rated voltage of cable U_0/U (U_m): 18/30 (36) kV

Length of each test loop: 3.5 m (without test object)

Cable type: Single core cable with XLPE insulation, type Charleroi

NEXANS EAXeCWB (see Appendix A.2)

Cable conductor material: Aluminium Cable conductor cross-section: 1000 mm^2 Rated voltage of cable U_0/U (U_m): 20.8/36(42) kV

PPR-3202 Page 3 of 41

1.3 Test standards

Requirements according to CENELEC HD 629.1 S3 from 2015-09 (Draft): Test requirements on accessories for use on power cables of rated voltage from 3,6/6 (7,2) kV up to 20,8/36 (42) kV, Part 1: Cables with extruded insulation; Table 6 Sequence A1 and Table 7 Sequence A1 for rated voltages U_0/U (U_m) 20,8/36(42) kV

1.4 Test facilities

The installation of the test objects as well as the electrical tests were carried out by technicians of Tyco Electronics Raychem GmbH in the High Voltage Laboratory in Ottobrunn/Germany.

1.5 Test dates

CSTI-6152-ML-7-13: 30.09.2016 - 16.12.2016 CSTO-6152-ML-7-13: 30.09.2016 - 25.01.2017 CSTO-6162-ML-8-21: 19.10.2016 - 06.02.2017

PPR-3202 Page 4 of 41

2 Test sequence and requirements

The test requirements are according to CENELEC HD 629.1 S3 from 2015-09 (Draft), Table 6 Sequence A1 and Table 7 Sequence A1 for rated voltage U_0/U (U_m) 20,8/36 (42) kV.

	Test	Test clause of EN 61442	Test requirements	Notes
1	AC voltage dry withstand	4	5 min at 93,5 kV, no breakdown	-
2	Partial discharge at ambient temperature	7	Max. 10 pC at 42 kV	-
3	Impulse voltage at elevated temperature	6	10 impulses of each polarity at ±200 kV, target temperature 95 - 100°C, no breakdown	-
4	Heating cycle voltage in air	9	126 heat cycles, target tem- perature 95 - 100°C, 52 kV, no breakdown	
5	Immersion	9.4	10 heat cycles, target temper- ature 95 - 100°C	Only required for outdoor terminations;
6	Partial discharge at elevated temperature	7	Heating up, target temperature 95 - 100°C, max. 10 pC at 42 kV	-
7	Partial discharge at ambient temperature	7	Max. 10 pC at 42 kV	-
8	Impulse voltage at ambient temperature	6	10 impulses of each polarity at ±200 kV, no breakdown	-
9	AC voltage dry withstand	4	5 min at 93,5 kV, no break- down	-
10	Partial discharge at ambient temperature	7	Max. 10 pC at 42 kV	-
11	Examination	-	-	-

PPR-3202 Page 5 of 41

3 Test setups

3.1 AC voltage dry withstand

The cable conductors of the test objects were connected to an AC voltage provided by a test transformer, the screens were put on ground potential (**Figure 1**). The voltage measurement was carried out with a capacitive divider. The measuring uncertainty within a range of 10 kV to 300 kV was 0.91%.

Technical data:

TT Test transformer: 350 kV, 175 kVA, 50 Hz C-Div Capacitive divider: 75 pF (high voltage side)

TO Test object

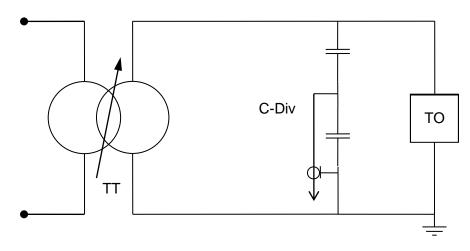


Figure 1: AC voltage dry withstand test setup

Measurement equipment:

Object	Туре	Calibration number	Calibration date
Capacitive divider	TUR MCF 75/350 P	000132 D-K-17601-01-00	2015-03
Coaxial cable	-	000132 D-K-17601-01-00	2015-03
AC peak voltmeter	LDIC voltage unit	000132 D-K-17601-01-00	2015-03

PPR-3202 Page 6 of 41

3.2 Partial discharge at ambient temperature

The cable conductors of the test objects were connected to an AC voltage provided by a test transformer, the screens were put on ground potential (**Figure 2**). The voltage measurement was carried out with a capacitive divider. The measuring uncertainty within a range of 10 kV to 300 kV was 0.91%. For the extraction of the partial discharge (PD) signals, a coupling capacitor and a quadrupole (i.e. measuring impedance) were used. A coil was installed to block interferences coming from the transformer side of the test setup. Prior to the test, the complete test arrangement including the test object was calibrated using a PD-calibrator.

Technical data:

TT Test transformer: 350 kV, 175 kVA, 50 Hz C-Div Capacitive divider: 75 pF (high voltage side)

C-C Coupling capacitor: 1000 pF

Q Quadrupole

L Coil

TO Test object

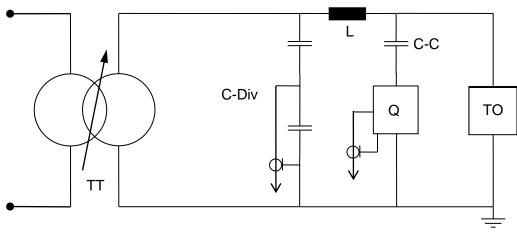


Figure 2: Partial discharge test setup

Measurement equipment:

Object	Туре	Calibration number	Calibration date
Capacitive divider	TUR MCF 75/350 P	000132 D-K-17601-01-00	2015-03
Coaxial cable	-	000132 D-K-17601-01-00	2015-03
AC peak voltmeter	LDIC voltage unit	000132 D-K-17601-01-00	2015-03
PD-measurement system	LDIC LDD-5	calibrated with PD- calibrator	n/a
PD-calibrator	LDIC LDC-5	RY-1341 & verified with PD-calibrator tester	2016-06-01
PD-calibrator tester	LDIC LDT-5	RY-1222	2016-07-15

PPR-3202 Page 7 of 41

3.3 Partial discharge at elevated temperature

The cable conductors of the test objects were connected to an AC voltage provided by a test transformer, the screens were put on ground potential (**Figure 2**). The voltage measurement was carried out with a capacitive divider. The measuring uncertainty within a range of 10 kV to 300 kV was 0.92%. For the extraction of the partial discharge (PD) signals, a coupling capacitor and a quadrupole (i.e. measuring impedance) were used. A coil was installed to block interferences coming from the transformer side of the test setup. Prior to the test, the complete test arrangement including the test object was calibrated using a PD-calibrator. The test objects were installed in a way that a closed loop was formed, which could be heated using an induced AC current provided by a heating transformer supplied by a variable transformer. The cable should be heated to a conductor temperature 5 - 10 K above the maximum cable conductor temperature in operation, i.e. 95 - 100°C for XLPE-cables. The temperature of the cable conductor was measured in-line using a reference cable of the same type as the test loops with a length of 3 m, a type K thermocouple and fibre optical temperature measurement transmission systems. The current was measured by a clamp meter.

PPR-3202 Page 8 of 41

3.4 Impulse voltage

The cable conductors of the test objects were connected to a Marx-generator with 8 stages, a maximum cumulative charging voltage of 800 kV and a maximum impulse energy of 24 kJ, the screens were put on ground potential (**Figure 3**). The voltage measurement was carried out with a resistive-capacitive divider and an impulse measurement system. The measuring uncertainty for the voltage amplitude within a range of 50 kV to 450 kV was 0.88% and for the time max. 4.76%.

Technical data:

Configuration 4 times 2 parallel stages in series: 400 kV max. charging voltage RC-Div Damped capacitive divider: 670 pF, 100 Ω (high voltage side)

TO Test object

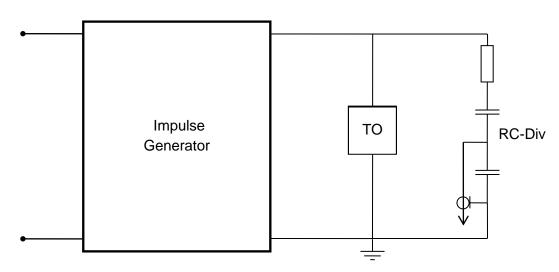


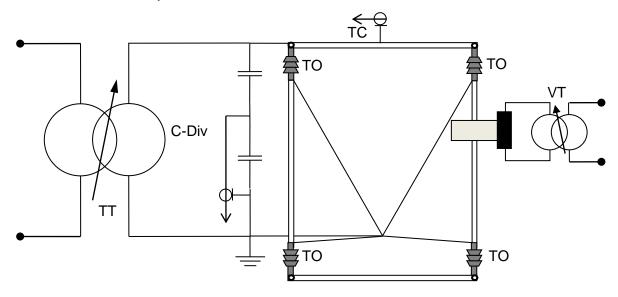
Figure 3: Impulse voltage test setup

Measurement equipment:

Object	Object Type Calibration number		Calibration date
Damped capacitive divider	Haefely CS1000	000177 D-K-17601-01-00	2015-03
Coaxial cable	-	000177 D-K-17601-01-00	2015-03
Digital transient re- corder	Haefely DiAS 733	000177 D-K-17601-01-00	2015-03

PPR-3202 Page 9 of 41

3.5 Heating cycle voltage in air


The cable conductors of the test objects were connected to an AC voltage provided by a test transformer, the screens were put on ground potential (**Figure 4**). The voltage measurement was carried out with a capacitive divider. The measuring uncertainty within a range of 10 kV to 100 kV was 0.59%. The test objects were installed in a way that a closed loop was formed, which could be heated using an induced AC current provided by a heating transformer supplied by a variable transformer. The cable should be heated to a conductor temperature 5 - 10 K above the maximum cable conductor temperature in operation, i.e. 95 - 100°C for XLPE-cables. The temperature of the cable conductor was measured in-line using a reference cable of the same type as the test loops with a length of 3 m, a type K thermocouple and fibre optical temperature measurement transmission systems. The heating cycles were controlled by an automated regulation system.

Technical data:

TT Test transformer: 100 kV, 100 kVA, 50 Hz
C-Div Capacitive divider: 100 pF (high voltage side)
VT Variable transformer: 230 V, 6.9 kVA, 50 Hz

HT Heating transformer: 9.2 kVA TC Thermocouple: Type K

TO Test object

Figure 4: Heating cycle voltage test setup (exemplary for one cable cross section and one type of termination)

PPR-3202 Page 10 of 41

3.6 Immersion test for outdoor terminations

The test objects were installed in a way that a closed loop was formed, which could be heated using an induced AC current provided by a heating transformer supplied by a variable transformer. The cable should be heated to a conductor temperature 5 - 10 K above the maximum cable conductor temperature in operation, i.e. 95 - 100°C for XLPE-cables. The temperature of the cable conductor was measured in-line using a reference cable of the same type as the test loops with a length of 3 m, a type K thermocouple and fibre optical temperature measurement transmission systems. The heating cycles were controlled by an automated regulation system. The test objects were mounted upside down in a water tank with a water height of min. 0.3 m above every part of the termination.

PPR-3202 Page 11 of 41

4 Results

4.1 AC voltage dry withstand

Date: 2016-09-30 (Test object A and B)

Ambient temperature: 25°C

Ambient relative humidity: 33%

Ambient pressure: 962 hPa

Date: 2016-10-19 (Test object C)

Ambient temperature: 25°C

Ambient relative humidity: 43%

Ambient pressure: 955 hPa

Test objects	Test voltage û/√2	Duration	Result
Α	93,3 kV	5 min	No breakdown
В	93,3 KV	3 111111	No breakdown
С	93,5 kV	5 min	No breakdown

Note: All test objects installed on the same cable cross section were tested simulta-

neously.

Requirement: No breakdown shall occur.

Result: All test objects passed the test.

PPR-3202 Page 12 of 41

4.2 Partial discharge at ambient temperature

Date: 2016-09-30 (Test object A and B)

Ambient temperature: 25°C

Ambient relative humidity: 33%

Ambient pressure: 962 hPa

Date: 2016-10-19 (Test object C)

Ambient temperature: 25°C

Ambient relative humidity: 43%

Ambient pressure: 955 hPa

Test object	Test voltage û/√2	Calibration charge	Noise	Result
Α	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC
В	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC
С	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC

Note: All test objects of the same type of termination and cable cross section were

tested simultaneously.

Requirement: Partial discharge level shall not exceed 10 pC.

Result: All test objects passed the test.

PPR-3202 Page 13 of 41

4.3 Impulse voltage at elevated temperature

The test object were exposed to 10 impulses of positive and negative polarity each. Before each series of 10 impulses, 3 calibration impulses of 50%, 65% and 80% of the test voltage level were applied. The recorded impulses are shown in **Figure 5** to **Figure 7**.

Date: 2016-10-12 (Test object A and B)

Ambient temperature: 25°C

Ambient relative humidity: 38%

Ambient pressure: 952 hPa

Date: 2016-10-25 (Test object C)

Ambient temperature: 25°C

Ambient relative humidity: 50%

Ambient pressure: 960 hPa

Test object	Voltage û	Front time	Time to half- value	Number of impulses	Result
А	±200 kV	1.773 µs to	51.276 µs	10 of each	No breakdown
В	1200 KV	1.786 µs	51.554 μs	polarity	No breakdown
С	±200 kV	1.175 µs to 1.178 µs	49.273 µs to 49.326 µs	10 of each polarity	No breakdown

Note: All test objects installed on the same cable cross section were tested simulta-

neously.

Requirement: Each test object shall withstand 10 positive and 10 negative impulses without

breakdown.

Result: All test objects passed the test.

PPR-3202 Page 14 of 41

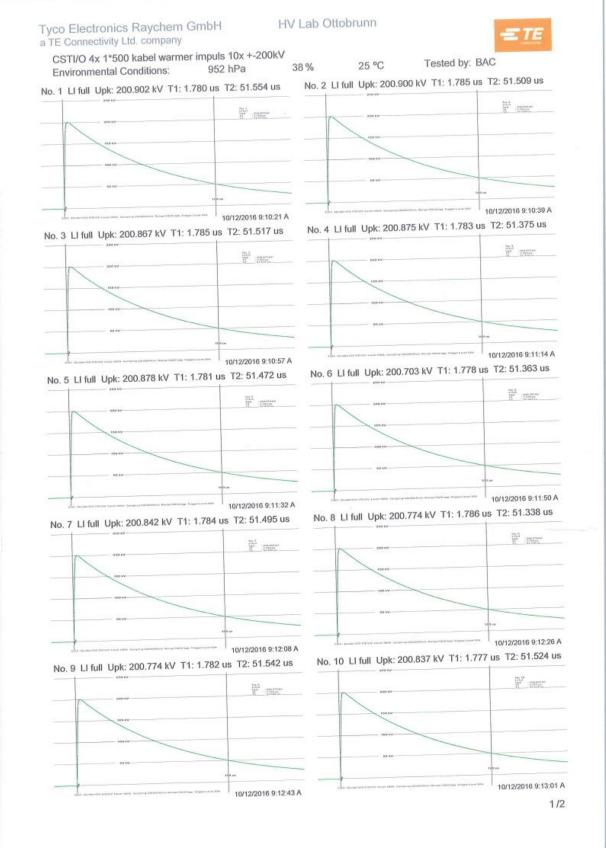


Figure 5: Positive impulses at elevated temperature on test objects A and B (500 mm²)

PPR-3202 Page 15 of 41

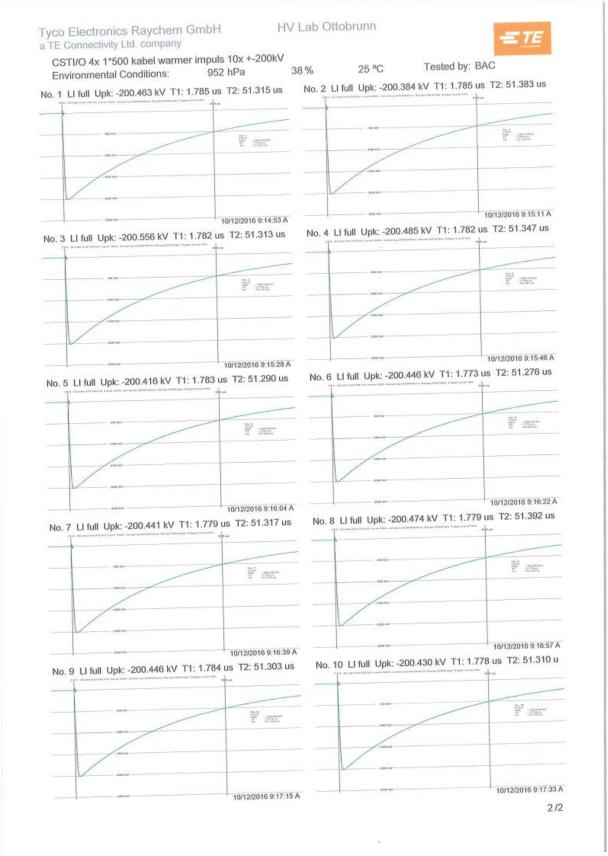
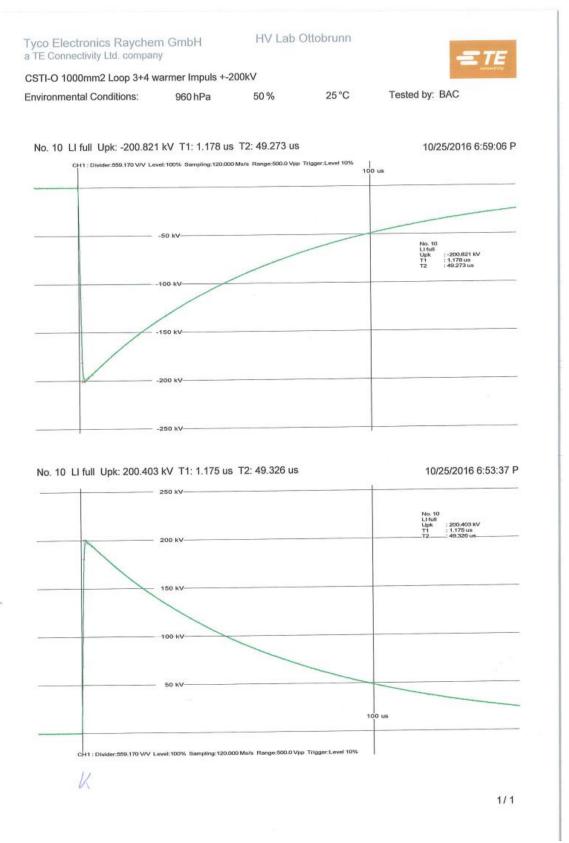



Figure 6: Negative impulses at elevated temperature on test objects A and B (500 mm²)

PPR-3202 Page 16 of 41

Figure 7: 10th positive and 10th negative impulse at elevated temperature on test objects C (1000 mm²)

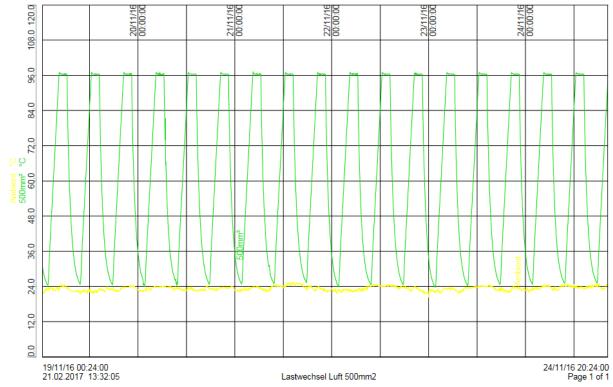
PPR-3202 Page 17 of 41

4.4 Heating cycle voltage in air

The recorded values of the test voltage, heating current, ambient temperature and cable conductor temperature are shown in **Figure 8** and **Figure 9**.

Date: 2016-10-14 to 2016-12-08 (test objects A and B)

2016-11-15 to 2016-12-29 (test object C)


Test object	Test voltage û/√2	Time of heating	Time of cooling	Number of cycles	Result
Α	52 kV	5 h	3 h	126	No breakdown
В	32 KV		311	120	No breakdown
С	52 kV	5 h	3 h	126	No breakdown

Note: All test objects installed on the same cable cross section were tested simulta-

neously.

Requirement: No breakdown shall occur.

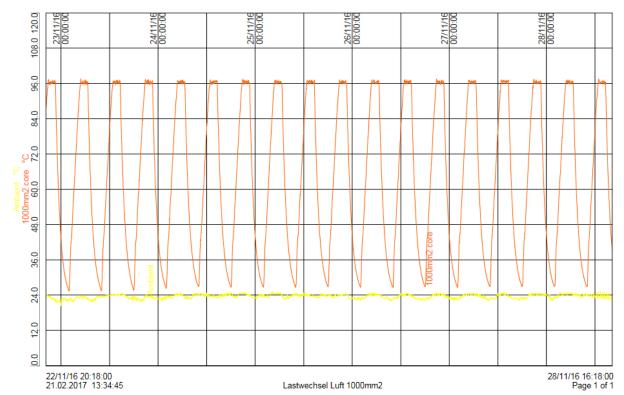

Result: All test objects passed the test.

Figure 8: Recorded values of ambient temperature (yellow) and cable conductor temperature 500 mm2 (green) during heat cycle voltage test in air

PPR-3202 Page 18 of 41

Figure 9: Recorded values of ambient temperature (yellow) and cable conductor temperature 1000 mm2 (orange) during heat cycle voltage test in air

4.5 Immersion test for outdoor terminations

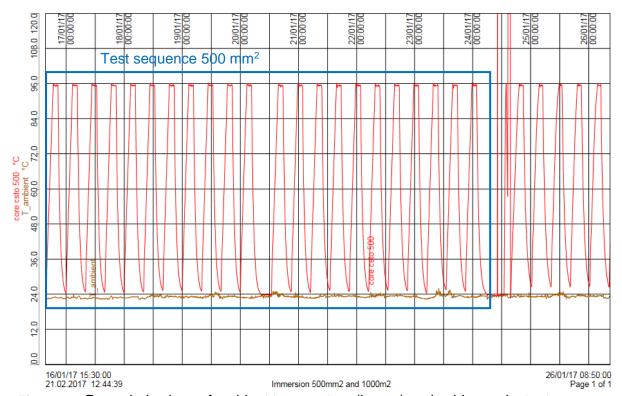
The recorded values ambient temperature and cable conductor temperatures are shown in **Figure 10** and **Figure 11**.

Date: 2017-01-16 to 2017-01-24 (test object B)

2017-01-24 to 2017-02-03 (test object C)

Test object		Time of cooling	Number of cycles	Result
Α		n/a		-
В	5 h	3 h	10	Ok
С	5 h	3 h	10	Ok

Note: Based on the large cable-cross section and the test setup only two test objects


have been tested in parallel. Therefore in total 20 cycles are shown on Figure

10 and Figure 11.

Result: All test objects passed the test.

PPR-3202 Page 19 of 41

Figure 10: Recorded values of ambient temperature (brown) and cable conductor temperature 500 mm² (red) during immersion test of test objects B

PPR-3202 Page 20 of 41

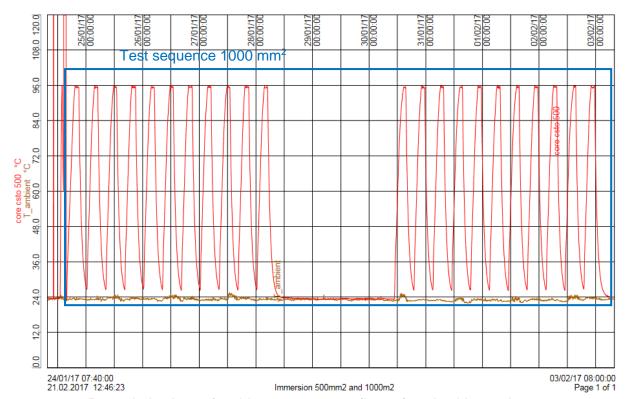


Figure 11: Recorded values of ambient temperature (brown) and cable conductor temperature 1000 mm² (red) during immersion test of test objects C

PPR-3202 Page 21 of 41

4.6 Partial discharge at elevated and ambient temperature

4.6.1 Elevated temperature

Date: 2016-12-15 (Test object A)

Ambient temperature: 25°C

Ambient relative humidity: 33%

Ambient pressure: 960 hPa

Date: 2017-01-24 (Test object B)

Ambient temperature: 25°C
Ambient relative humidity: 33%
Ambient pressure: 960 hPa

Date: 2017-02-03 (Test object C)

Ambient temperature: 25°C

Ambient relative humidity: 33%

Ambient pressure: 945 hPa

Test object	Test voltage û/√2	Time of heating	Calibration charge	Noise	Result										
Α	42 kV	5 h	10 pC	≤ 3 pC	PD-level ≤ 3 pC										
В	42 KV	311	011	011		011	0 11	011	011	011	311	10 00	≥ 3 pC	= 5 pc	PD-level ≤ 3 pC
С	42 kV	5 h	10 pC	≤ 3 pC	PD-level ≤ 3 pC										

Note: All test objects installed on the same cable cross section were tested simulta-

neously.

Requirement: Partial discharge level shall not exceed 10 pC.

Result: All test objects passed the test.

4.6.2 Ambient temperature

Date: 2016-12-15 (Test object A)

Ambient temperature: 25°C
Ambient relative humidity: 33%
Ambient pressure: 960 hPa

Date: 2017-01-25 (Test object B)

Ambient temperature: 25°C

Ambient relative humidity: 33%

Ambient pressure: 960 hPa

PPR-3202 Page 22 of 41

Date: 2017-02-06 (Test object C)

Ambient temperature: 23°C
Ambient relative humidity: 33%
Ambient pressure: 950 hPa

Test object	Test voltage û/√2	Calibration charge	Noise	Result
Α	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC
В	42 kV	10 pC	≤ 4 pC	PD-level ≤ 4 pC
С	42 kV	10 pC	≤ 4 pC	PD-level ≤ 4 pC

Note: All test objects of the same type of termination and cable cross section were

tested simultaneously.

Requirement: Partial discharge level shall not exceed 10 pC.

Result: All test objects passed the test.

PPR-3202 Page 23 of 41

4.7 Impulse voltage at ambient temperature

The test object were exposed to 10 impulses of positive and negative polarity each. Before each series of 10 impulses, 3 calibration impulses of 50%, 65% and 80% of the test voltage level were applied. The recorded impulses are shown in **Figure 12** to **Figure 17**.

Date: 2016-12-16 (Test object A)

Ambient temperature: 25°C

Ambient relative humidity: 33%

Ambient pressure: 963 hPa

Date: 2017-01-25 (Test object B)

Ambient temperature: 25°C
Ambient relative humidity: 33%
Ambient pressure: 960 hPa

Date: 2017-02-06 (Test object C)

Ambient temperature: 23°C
Ambient relative humidity: 33%
Ambient pressure: 950 hPa

Test	Voltage û	Front time	Time to half-	Number of	Result
object	voitage u	From time	value	impulses	Result
		1.375 µs	50.404 μs	10 of each	
Α	±200 kV	to	to		No breakdown
		1.443 µs	50.651 µs	polarity	
		1.400 µs	50.537 μs	10 of each	
В	±200 kV	to	to		No breakdown
		1.422 µs	50.667 μs	polarity	
		1.204 µs	49.907 µs	10 of each	
С	±200 kV	to	to	polarity	No breakdown
		1.251 µs	50.143 µs	ροιατιτή	

Note: All test objects of the same type of termination and cable cross section were

tested simultaneously.

Requirement: Each test object shall withstand 10 positive and 10 negative impulses without

breakdown.

Result: All test objects passed the test.

PPR-3202 Page 24 of 41

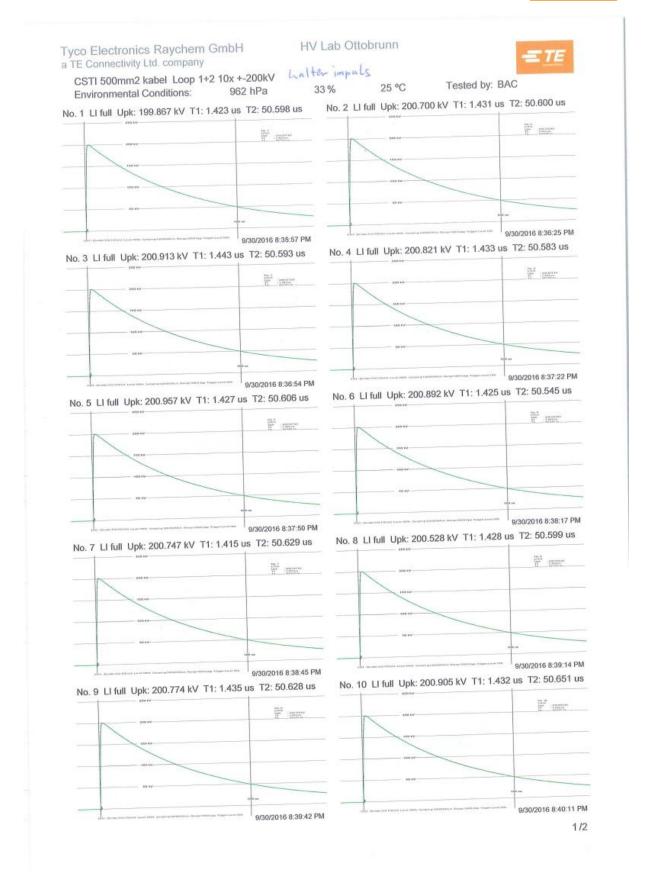


Figure 12: Positive impulses at ambient temperature on test object A (500 mm²)

PPR-3202

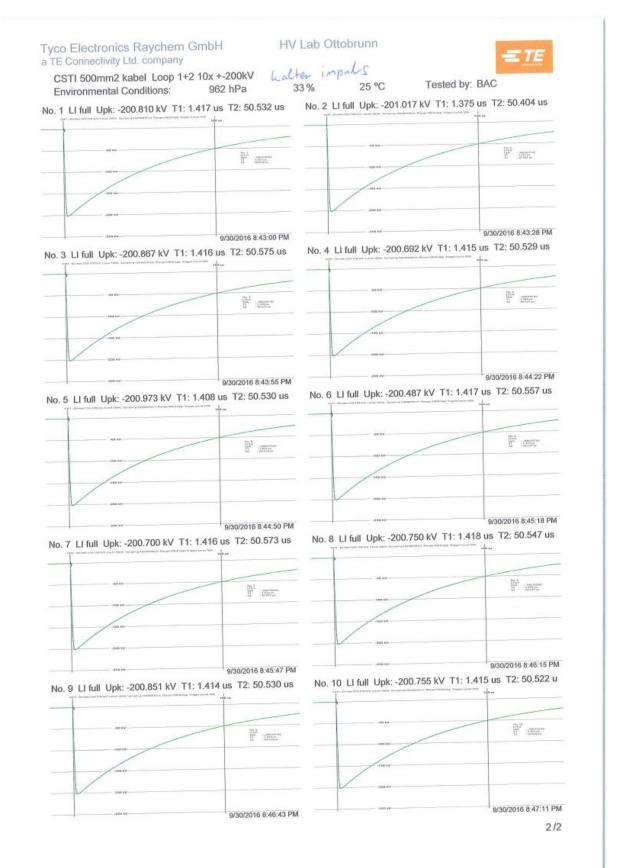


Figure 13: Negative impulses at ambient temperature on test object A (500 mm²)

PPR-3202 Page 26 of 41

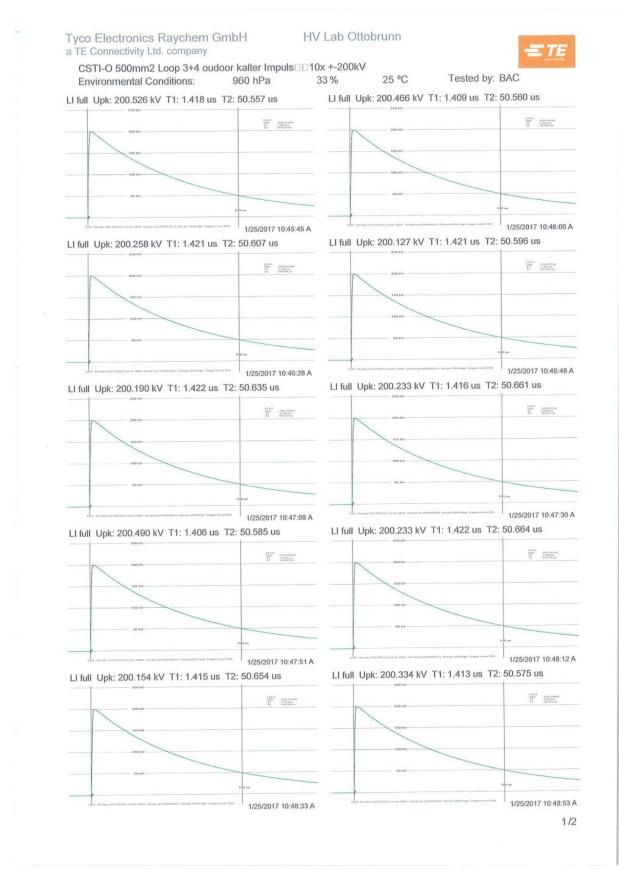


Figure 14: Positive impulses at ambient temperature on test object B (500 mm²)

PPR-3202 Page 27 of 41

Figure 15: Negative impulses at ambient temperature on test object B (500 mm²)

PPR-3202 Page 28 of 41

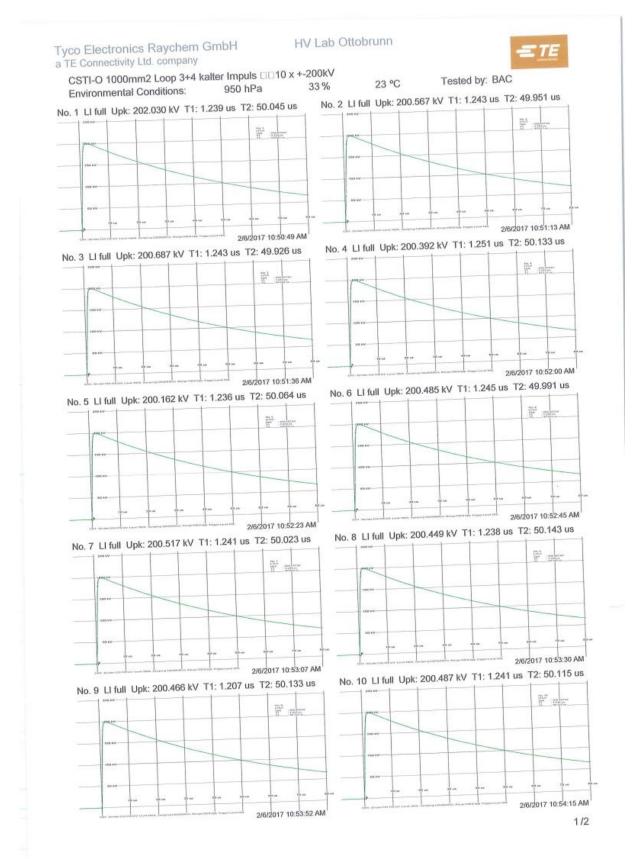


Figure 16: Positive impulses at ambient temperature on test object C (1000 mm²)

PPR-3202 Page 29 of 41

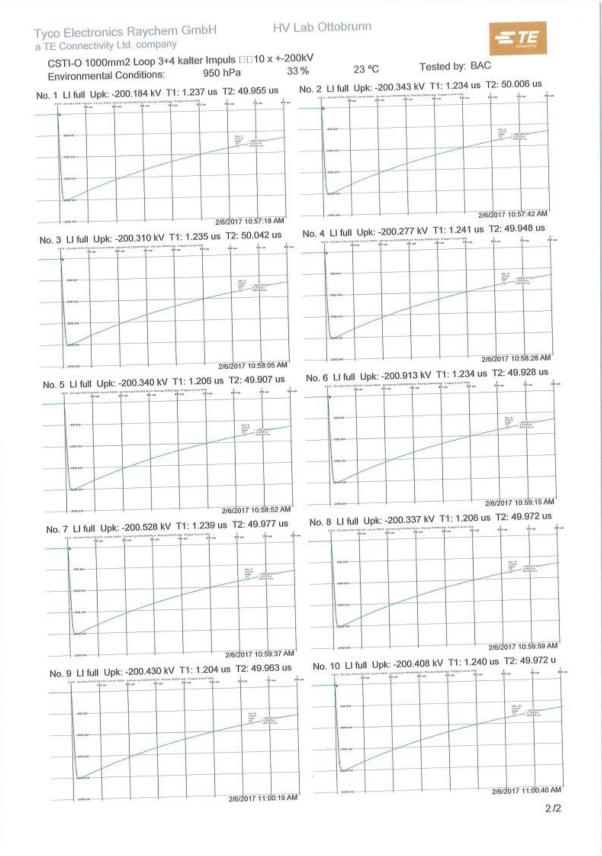


Figure 17: Negative impulses at ambient temperature on test object C (1000 mm²)

PPR-3202 Page 30 of 41

4.8 AC voltage dry withstand

Date: 2016-12-16 (Test object A)

Ambient temperature: 25°C

Ambient relative humidity: 33%

Ambient pressure: 963 hPa

Date: 2017-01-25 (Test object B)

Ambient temperature: 25°C

Ambient relative humidity: 33%

Ambient pressure: 960 hPa

Date: 2017-02-06 (Test object C)

Ambient temperature: 23°C
Ambient relative humidity: 33%
Ambient pressure: 950 hPa

Test object	Test voltage û/√2	Duration	Result
Α	93,5 kV	5 min	No breakdown
В	93,5 KV		No breakdown
С	93,5 kV	5 min	No breakdown

Note: All test objects installed on the same cable cross section were tested simulta-

neously.

Requirement: No breakdown shall occur.

Result: All test objects passed the test.

PPR-3202 Page 31 of 41

4.9 Partial discharge at ambient temperature

Date: 2016-12-16 (Test object A)

Ambient temperature: 25°C

Ambient relative humidity: 33%

Ambient pressure: 963 hPa

Date: 2017-01-25 (Test object B)

Ambient temperature: 25°C
Ambient relative humidity: 33%
Ambient pressure: 960 hPa

Date: 2017-02-06 (Test object C)

Ambient temperature: 23°C
Ambient relative humidity: 33%
Ambient pressure: 950 hPa

Test object	Test voltage û/√2	Calibration charge	Noise	Result
Α	42 kV	10 pC	≤ 4 pC	PD-level ≤ 4 pC
В	42 kV	10 pC	≤ 4 pC	PD-level ≤ 4 pC
С	42 kV	10 pC	≤ 4 pC	PD-level ≤ 4 pC

Note: All test objects of the same type of termination and cable cross section were

tested simultaneously.

Requirement: Partial discharge level shall not exceed 10 pC.

Result: All test objects passed the test.

PPR-3202 Page 32 of 41

4.10 Examination

Date: 2017-02-10 (CSTI-6152-ML-7-13, CSTO-6152-ML-7-13)

2017-02-10 (CSTO-6162-ML-8-21)

The test samples were examined for the following criteria:

(i) cracking in the filling media and/or tape or tube components

- (ii) a moisture path bridging a primary seal
- (iii) corrosion and/or tracking and/or erosion
- (iv) leakage of any insulating material

Test ob- ject	Criteria (i)	Criteria (ii)	Criteria (iii)	Criteria (iv)
Α	Not found	Not found	Not found	Not found
В	Not found	Not found	Not found	Not found
С	Not found	Not found	Not found	Not found

PPR-3202 Page 33 of 41

A. Appendices

A.1 Identification of test cable 500 mm²

Rated voltage U_0/U (U_r	n): 18/30 (36) kV		
Cable construction:		3-core	☐ Individually screen
			Overall screen
Conductors:	⊠ AI	☐ Cu	
		Solid	
	⊠ Circular	Shaped	
	☐ 120mm²	☐ 150mm²	☐ 185mm²
	☐ 240mm²		
		n: 500 mm²	
Insulation:		Other:	
	☐ EPR	HEPR	
Insulation screen:	⊠ Bonded	Strippable	
Metallic screen:	⊠ Wires	☐ Tapes	☐ Extruded
	□ AI	⊠ Cu	Other
Armour:	☐ Wire	☐ Tape	
Oversheath:	☐ PVC	□ PE (state type)	
Water blocking, if any:	☐ Within conductor	□ Under oversheath	
Diameters:	Conductor:	26.0 mm	
	Insulation:	43.1 mm	
	Insulation screen:	44.7 mm	
	Oversheath:	52.4 mm	
Cable marking:	e marking: VDE0276 NA2XS(F)2Y 1 x 500/35RM 18/30kV 2015 FACAB 0620		

PPR-3202 Page 34 of 41

A.2 Identification of test cable 1000 mm²

Rated voltage U ₀ /U (U _n	n): 20.8/36 (42) kV		
Cable construction:		3-core	☐ Individually screen
Conductors:	⊠ AI	☐ Cu	
	Stranded	Solid	
	⊠ Circular	Shaped	
	☐ 120mm²	☐ 150mm²	☐ 185mm²
	☐ 240mm²		
	Other cross section	n: 1000 mm²	
Insulation:		Other:	
	☐ EPR	HEPR	
Insulation screen:	⊠ Bonded	Strippable	
Metallic screen:	⊠ Wires	☐ Tapes	☐ Extruded
	□ AI	⊠ Cu	Other
Armour:	☐ Wire	☐ Tape	
Oversheath:	☐ PVC	□ PE (state type)	
Water blocking, if any:	☐ Within conductor	□ Under oversheath	
Diameters:	Conductor:	40.0 mm	
	Insulation:	53.5 mm	
	Insulation screen:	56.0 mm	
	Oversheath:	65.5 mm	
Cable marking: Charleroi NEXANS EAXeCWB 20.8/36(42)kV 1 x 1000/3 2010			1 x 1000/35 6.0mm


PPR-3202 Page 35 of 41

A.3 Installation instructions

Installation Instruction EPP-2828-2/17

Raychem **Termination for Screened** Single Core Polymeric Cable without Armour

Type: CSTI/CSTO Indoor/Outdoor

36 kV / 42 kV

Tyco Electronics Raychem GmbH a TE Connectivity Ltd. Company TE Energy Finsinger Feld 1 85521 Ottobrun/Munich, Germany

Tel: +49-89-6089-0 Fax: +49-89-6096-345 energy.te.com

PPR-3202 Page 36 of 41

Before Starting

Check to ensure that the kit you are going to use fits the cable.

Refer to the kit label and the title of the installation instructions.

Components or working steps may have been modified since you last installed this product.

Carefully read and follow the steps in the installation instructions.

General Instructions

Clean and degrease all parts that will come into contact with adhesive.

If a solvent is used follow the manufacturer's handling instructions.

Check core preparation dimensions before installing the termination.

Grease the prepared cable only with the provided grease.

Check cable ends for ingress of moisture before starting with cable preparation.

For easy strip screen layers always use a round file to cut radially through the core screen.

The Information contained in these installation instructions is for use only by installers trained to make electrical power installations and is intended to describe the correct method of installation for this product. However, TE Connectivity has no control over the field conditions which influence product installation. It is the user's responsibility to determine the suitability of the installation method in the user's field conditions. TE Connectivity's only obligations are those in TE Connectivity's standard Conditions of Sale for this product and in no case will TE Connectivity be liable for any other incidental, indirect or consequential damages arising from the use or misuse of the products.

Raychem, TE, TE Connectivity and TE connectivity (logo) are trademarks.

© 2017 TE Connectivity. All Rights Reserved.

EPP-2828-2/17 Page 2/5

PPR-3202 Page 37 of 41

Cable Preparation

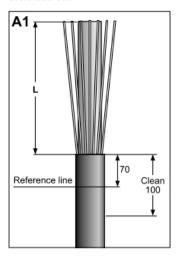
Before Starting

Check to ensure that the kit you are going to use fits the cable.

Refer to the kit label and the title of the installation instruction.

Components or work steps may have been improved since you last installed this product.

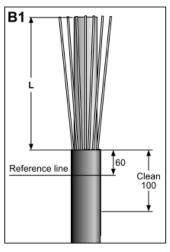
Carefully read and follow the steps in the installation instruction.


Table for cutback dimensions

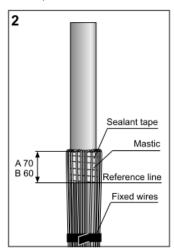
	Cable	L
Mechanical lug BLMT	Cross Section AL / Cu	Indoor/Outdoor 36 kV/42 kV
	mm²	mm
BLMT 25/95	95	435
BLMT 35/150	50	460
BLMT 35/150	95	450
BLMT 35/150	150	450
BLMT 95/240	120	430
BLMT 95/240	185	450
BLMT 95/240	240	440
BLMT 185/400	185	475
BLMT 185/400	400	445
BLMT 500/630	500	485
BLMT 500/630	630	485
BLMT 800/1000	1000	460

For cable cross section 50 - 630 mm²

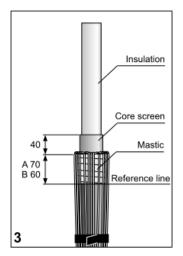
Cut the cable to the required length. Remove the oversheath according to L. Clean and degrease the end of the oversheath for approximately 100 mm.


Mark a line 70 mm below the oversheath cut.

For cable cross section 800 - 1000 mm²

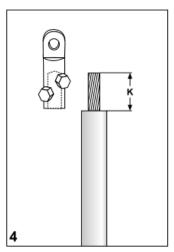

Cut the cable to the required length. Remove the oversheath according to L. Clean and degrease the end of the oversheath for approximately 100 mm.

Mark a line 60 mm below the oversheath cut.

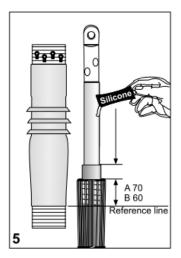

EPP-2828-2/17 Page 3/5

Wrap two layers of sealant tape (grey) with a small overlap and slight tension around the end of the oversheath as shown. Bend the shielding wires back onto the oversheath. Avoid crossing the individual wires. Fix the shielding wires with a tape to the oversheath.

PPR-3202 Page 38 of 41



Thoroughly remove the core screen to within 40 mm of the oversheath cut. The surface of the insulation should be free from all traces of conductive material.

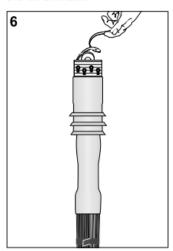

Smooth out any irregularities.

Note: Do not nick the insulation.

Cut back the insulation according to Mechanical lugs:

K = depth of cable lug barrel hole Install the cable lug and remove all sharp edges. Clean and degrease the core insulation and the lug.

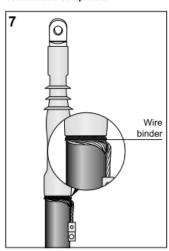
Apply a thin layer of silicone grease onto the insulation and the core screen cut


Position the termination body.

Pull the spiral gently until the termination body butts to the reference line.

If the termination is not correctly positioned, it is possible to gently slide it into place.

Remove the spiral holdout completely from the termination by pulling it counterclockwise.


Do not twist the spiral holdout during removal. Avoid the spiral to hook up over the termination.

Degrease and clean the termination.

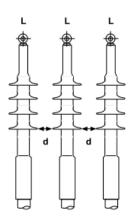
Fix the shield wires with a wire binder along the lower edge of the termination body. Install the cable lug on the shield wires.

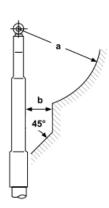
Termination completed.

EPP-2828-2/17 Page 4/5

Please dispose of all waste according to local environmental regulations.


PPR-3202 Page 39 of 41


CSTI/CSTO - Product family


Indoor

Outdoor

Mi	n. clearances	Max. system voltage in kV	
		36	42
а	Air clearance	as for local specifications	
b	ph/ph and ph/ground in mm	35	45
d	Between skirts in mm	25	35

EPP-2828-2/17 Page 5/5

PPR-3202 Page 40 of 41

A.4 Kit content lists

CSTO-6152-ML-7-13

1	482406-000	S1278-1-300(B100)
2	EK3103-001	EPP-2828-8/16
3	E74727-000	EPPA-004
4	724277N001	EXRM-0568
5	CV2903-000	EPPA-076-5
6	989771-000	EPPA-029-3-3000
7	E43601-000	HEL-2070.1-Z-AK
8	2107410-1	BLMT-500/630 MK2-13
9	2304322-6	CSTO-35-BD-32-581-FS

CSTI-6152-7-13

1	482406-000	S1278-1-300(B100)
2	EK3103-001	EPP-2828-8/16
3	E74727-000	EPPA-004
4	724277N001	EXRM-0568
5	CV2903-000	EPPA-076-5
6	989771-000	EPPA-029-3-3000
7	E43601-000	HEL-2070.1-Z-AK
8	2107410-1	BLMT-500/630 MK2-13
9	2304321-6	CSTI-35-BD-32-583-FS

CSTO-6162-ML-8-21

1	482406-000	S1278-1-300(B100)
2	EK3103-001	EPP-2828-8/16
3	E74727-000	EPPA-004
4	724277N001	EXRM-0568
5	CV2903-000	EPPA-076-5
6	989771-000	EPPA-029-3-3000
7	E43601-000	HEL-2070.1-Z-AK
8	2304322-6	CSTO-35-BD-32-581-FS
9	2832081-2	BLMT-800/1000-21

PPR-3202 Page 41 of 41